Hexagonal circle packings and Doyle spirals

By Jos Leys, February 2005.
Some clarification fothis webpage

Peter Doyle discovered the fact that a set of@egrarranged around a central circle (a
‘flower’) with dimensions as indicated in Figurébg&low, may be extended to an infinite
hexagonal circle packing of the plane. ( whichasgbly overlapping ,i.e. not coherent).
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With this knowledge, it is possible to constructi@mite amount of circle arrangements,
as proven by Stephenson et.al

Let C be a circle with radius r, and center at 1 orréa axis. LetA andB be complex
numbers.



Figure 2

There are circles with radidi8|*r, centered af, and circles with radiulB|*r centered at
B so that these circles are tangen€Ctand to each other. (Figure 2)

PuttingA=f.exp(i* 8) andB= g.exp(i* ¢ ), the following equations apply :
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Not all solutions to these equations will resulhon-overlapping circle arrangements.
We need an extra condition:

Let B%=AP with q andp integers, then there is a solution for these éousifor everyp
andq.

If g=n*p, then analytic solutioAsxist forn=1, andn=2. Numerical methods are needed
for othern.

A andB can be seen as transformations on the base €irdlee conditiorB=AP assures
that the transformed circles coincide affe¢B’ transformations op ‘A’ transformations
(Figure 3)



Figure 3

The circle packing patterns that are generatediaiscan be transformed onto the
surface of a sphere by projection on the Riemahersp or through the use of a sphere
inversion. Replacing all the circles by spherethefsame diameter produces images that
are graphically more appealing. Both of these foanscircles to circles and spheres to
spheres. (Figure 4)
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The above formulas can be adapted for the caseslwé¢ine circles overlap, with a given
intersection angle, see Figure 5.
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