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1. Introduction 

We consider Kleinian group limit sets with the Maskit parametrisation. The limit set is defined by two Moebius transformations: 

 𝑎 ∶   𝑧 →
𝑡𝑧−𝑖

−𝑖𝑧
   and  𝑏 ∶ 𝑧 → 𝑧 + 2 , where 𝑡 = 𝑢 + 𝑖𝑣 is a complex number. The inverse transformations are 𝐴 ∶   𝑧 →

𝑖

𝑖𝑧+𝑡
  and  

𝐵 ∶ 𝑧 → 𝑧 − 2 . 

This produces limit sets like the one in figure 1 for   𝑢 = 2, 𝑣 = 0 : 

 

Figure 1 

For 𝑢 < 2 and  𝑣 ≠ 0 , for instance  𝑢 = 1.95, 𝑣 = 0.07, the limit set is shown in figure 2 : 

 

Figure 2 

Inside the parallelogram drawn in figure 2, the shapes are symmetrical to the point  𝑧 = −
𝑣

2
+ 𝑖𝑢/2 . The action of 𝑏 and 𝐵 produces 

endless identical copies to the left and to the right. 

The largest circles, tangent to the lines 𝑦 = 0 and 𝑦 = 𝑢 are the images of said lines by a circle inversion of radius 1, centered at the 

origin, and at the point −𝑣 + 𝑖𝑢  respectively. When any circle that belongs to the limit set is transformed by a Moebius transformation 

formed by any ‘word’ in the letters  𝑎, 𝐴, 𝑏 𝑎𝑛𝑑 𝐵 , the resulting circle will also be part of the limit set. This allows generating images 

like the ones in figures 3 and 4. 
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Figure 3 

 

Figure 4 

Generating these images can be done with the methods described in 1. It involves forming a structured set of ‘words’ with the 

transformations  𝑎, 𝐴, 𝑏 𝑎𝑛𝑑 𝐵. These methods do not allow deciding upfront whether a point in the plane is part of the limit set or not. 

Detailed images require prolonged calculation times: zooming in on details of an image requires longer ‘words’, and it is difficult to 

generate just the part of the limit set that is in the zoom window, resulting in long calculations, in the order of dozens of minutes, 

sometimes hours. 

The method described below does determine if a point is part of the limit set, and is therefore extremely fast, allowing such things as 

zooming in on the limit set in real time. An image typically takes just a few seconds to complete. 

 

2. The fast algorithm 

We draw three lines (figure 5): line 1 between the points 1 + 𝑖0 and  1 − 𝑣 + 𝑖𝑢 , line 2 between the points −1 + 𝑖0 and −1 − 𝑣 + 𝑖𝑢, 

and finally line 3 separating the upper and lower parts of the limit set .  We introduce the following rules:  

 if a point is on the right of line 1 we move the point  so that it falls between line 1 and line 2 . If the point is to the left of line 

2 we do the same. This move on a point 𝑧 = 𝑥 + 𝑖𝑦 can be described by : 𝑥 → (𝑥 + 2𝑁 − 1 +
𝑣𝑦

𝑢
) 𝑚𝑜𝑑𝑢𝑙𝑜(2) − 1 − 𝑣𝑦/𝑢 , 

where N is some (large) positive integer. 

 if a point is below line 3 we apply transformation 𝑎, if not we take transformation 𝐴. 

Suppose a point is in a one of the yellow circles in figure 5. The above rules will move a point so that it always jumps to a spot that is 

also in a yellow circle and will eventually make the point end up in the largest circle that is tangent to the line 𝑦 = 0 . This circle is 

actually the line  𝑦 = 𝑢 , after a circle inversion in a circle of radius 1, centered at the origin. When transform 𝑎 is again applied to a 

point in this circle, then the new point will be outside the strip  0 ≤ 𝑦 ≤ 𝑢. Figure 5 shows the orbit of such a point. 

                                                                 
1
 Indra’s Pearls, the vision of Felix Klein by David Mumford, Caroline Series and David Wright. Cambridge University Press 
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Figure 5 

Under the same rules, a point in a blue circle will be carried to the largest upper blue circle that is tangent to the line 𝑦 = 𝑢 , and this 

circle is actually the line 𝑦 = 0 , transformed by a circle inversion in a circle of radius 1 centered at −𝑣 + 𝑖𝑢 . The next application of 

the transform  𝐴  will make this point jump above the line 𝑦 = 𝑢. See figure 6. 

 

Figure 6 

 Finally, a point that is not in any yellow or blue circle will not escape from the strip 0 ≤ 𝑦 ≤ 𝑢. In fact, after a number of jumps the 

orbit settles down into a two-cycle : the point bounces back and forth between two positions. See figure 7. 

 

Figure 7 

This then produces a simple, but very efficient algorithm : 

 

Line 1 
Line 2 

2-cycle 
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For every pixel 𝑧  : 

 If  𝑖𝑚𝑎𝑔(𝑧) < 0 or  𝑖𝑚𝑎𝑔(𝑧) > 𝑢 , do nothing, go to next pixel. 

 Else, ‘wrap’ the point so it is between line 1 and line 2. 

 If it is below line 3 apply 𝑎 else apply  𝐴. 

 If 𝑖𝑚𝑎𝑔(𝑧) < 0 or 𝑚𝑎𝑔(𝑧) > 𝑢 , colour the pixel, stop, go to next pixel. 

 If a two-cycle is detected, stop, go to next pixel. 

 Repeat 

This algorithm is extremely fast. The images in figures 5-7 (800*227 pixels) calculate in less than 1 second on a computer with Intel 

I7-4702MQ processor. 

Line 3, the separation line, is quite important. As 𝑢 gets smaller and 𝑣 is small, the sets of blue circles and yellow circles get closer 

together, and a straight line does not fit between the two. In figure 8, 𝑡 = 1.92 + 0.03𝑖 and the line is an exponential formula like 

𝑦 =
𝑢

2
+ 𝑓𝐾𝑢(1 − 𝑒−𝑀.𝑎𝑏𝑠(𝑥+

𝑣

2
))  , where 𝑓 = 1  if 𝑥 ≥ −𝑣/2  , and 𝑓 = −1  otherwise, and 𝐾 and 𝑀  are suitable constants. 

 

Figure 8 

For most values of   𝑡, the exponential separation line will do fine. There are cases however where a more complicated separation line 

is necessary, as explained in the next section. 

3. Cusps
2
 

For specific values of 𝑡, the limit set will be cusped. This happens if a matrix of the form 𝑎𝑛𝐵𝑚 is parabolic, meaning that its trace 

(the sum of the diagonal elements) is equal to two. Finding the value of 𝑡 for given 𝑛 and 𝑚 is explained extensively in 3, along with  

the procedure for determining the exact multiplication order of 𝑎𝑛𝐵𝑚 . For instance, for  𝑛 = 15 , 𝑚 = 2, this order (where 

multiplication is done from right to left) is : 

aaaaaaaaBaaaaaaaB 

This is called the 2/15 cusp. The value of 𝑡 works out at 𝑡 = 1.85738240046052. . −i0.0762580599328681... The corresponding 

limits set is in figure 10. The complement of the limit set, the white region in the image, now also consists of tangent circles, and it 

seems that we need a separation line that passes through the tangency points of a string of these white circles. 

                                                                 
2
 I am grateful to Geoffrey R. Smith of San José, California, USA for his help in this section. 

3 Indra’s Pearls, the vision of Felix Klein by David Mumford, Caroline Series and David Wright . Cambridge University Press. 

Chapter 9 : “Accidents will happen” 
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Figure 9 

The black point in figure 9 is the fixed point of the matrix 𝑎15𝐵2. As the trace equals 2, there is only 1 fixed point for this 

transformation. This point is on a tangency point of two white circles. We now take the 𝑎15𝐵2 word, determine all its cyclic 

permutations, and calculate the fixed point of each resulting transformation.  It turns out that all these points lie on tangency points of 

white circles as shown in figure 10. We have also added four orange points. These are the points  1 + 𝑖0, 1 − 𝑣 + 𝑖𝑢, −1 + 𝑖0 , −1 −

𝑣 + 𝑖𝑢 . 

 

Figure 9 

Connecting all these points should yield the correct separation line. However, in order to find adjacent points in the string, we first 

need to order the words obtained by the cyclic permutations. To determine the order, consider each word as a number, where 𝑎 and B 

have each been replaced by some constant integer value, making sure that the value for 𝑎 is smaller than the value for  𝐵. The words 

can then be ordered in increasing value of the resulting number.This done, we can connect the points, including the four orange ones, 

with straight line segments to produce the separation line, as shown in figure 11: 

 

Figure 10 
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A separation line can become quite complicated. Figure 12 shows the 10/151 cusp. There are 165 points to consider for the separation 

line. 

 

Figure 11 

It is clear that the algorithm needs adaptation, as the rule to choose between transformation 𝑎 or 𝐴 depending on whether the position 

of the point being iterated is above or below the separation line, is no longer valid. We now need to check whether the point is inside 

or outside a polygon, the green polygon as in figure 13. (Efficient algorithms exist to do this. See for instance 4.) 

Furthermore, the horizontal ‘wrapping’ of a point during the iteration now needs to be between the two ‘S-shaped’ lines in figure 13. 

 

 

Figure 12 

4. Variations. 
4.1 The 𝑏 transformation. 

This transformation was defined as  𝑏 ∶ 𝑧 → 𝑧 + 2 . This can be changed to  𝑏 ∶ 𝑧 → 𝑧 + 𝑘 , where 𝑘 = 2 cos(𝜋/𝑛) with 𝑛 an 

integer number. Figure 14 shows, top to bottom, the results for  𝑛 = 6 , 5 ,4 . 

                                                                 
4
 Inclusion of a point in a polygon :   http://geomalgorithms.com/a03-_inclusion.html 
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Figure 13 

4.2 Circle inversions. 

Here we do a pre-transform of a point before starting the algorithm. The pixel coordinate 𝑧 is first transformed by a circle inversion in 

a circle of radius 𝑅, located at the point 𝑃: 

Let 𝑞 = 𝑧 − 𝑃, ℎ = tan−1(𝑞) , then 𝑧 → 𝑃 + 𝑅2𝑒𝑖ℎ/|𝑞| . 

Some examples: 

The 1/15 cusp,  𝑡 = 1.95859103011179 − 𝑖0.0112785606117658 , with a circle inversion in a circle of radius, centered at 0 − 𝑖1. 

(figure 15)  Rendering time 3 seconds. 
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Figure 145 

Figure 16 : 𝑡 = 1.93 + 𝑖0.04 , inversion in a circle of radius 1, located at 0.6 + 𝑖0.8 . Rendering time less than 1 second. 

 

Figure 15 
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5. Conclusion 

The algorithm described in this article provides a novel, very fast way of drawing limit sets of Kleinian groups with the Maskit 

parametrisation.  

Remark : some of the principles used here can be applied to another algorithm that draws three-dimensional limit sets using 

raymarching techniques. This will be treated in another article.  

 


